US009306794B2

a2 United States Patent

Kirshnan et al.

US 9,306,794 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

ALGORITHM FOR LONG-LIVED LARGE
FLOW IDENTIFICATION

Applicant: Brocade Communications Systems,
Inc., San Jose, CA (US)

Inventors: Ram Kirshnan, Cupertino, CA (US);

John Terry, San Jose, CA (US)

Assignee: Brocade Communications Systems,

Inc., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 414 days.
Appl. No.: 13/797,169
Filed: Mar. 12,2013
Prior Publication Data
US 2014/0126393 Al May 8, 2014

Related U.S. Application Data

Provisional application No. 61/721,971, filed on Nov.
2,2012.

Int. Cl1.
HO4L 12726 (2006.01)
GO6F 15/16 (2006.01)
GO6F 15/173 (2006.01)
HO4L 29/06 (2006.01)
HO4L 12/801 (2013.01)
GO6F 17/30 (2006.01)
HO4L 12/54 (2013.01)
HO4L 12/701 (2013.01)
U.S. CL
CPC ... HO4L 29/06 (2013.01); GOGF 17/30949
(2013.01); HO4L 43/026 (2013.01); HO4L
43/062 (2013.01); HO4L 47/10 (2013.01);
HO4L 12/5695 (2013.01); HO4L 45/00
(2013.01)
304{0)0) 304(0)(1)
300(0) 302(0) C'\ 2
S
300(1) se2ty 9 12

&

it

304(100) 304{1)1}

Flow —™

Key

366(m)

(w3

304(m}1)

— -
302(m)

304(m){(C)

-

(58) Field of Classification Search
CPC HO4L 43/062; HO4L 43/026
709/223, 232, 238; 711/216; 713/201,
704/10; 370/230, 235,392
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,430,203 B2 9/2008 Millet et al.
7,733,805 B2 6/2010 Kanda et al.
2003/0012139 Al 1/2003 Fukumoto et al.
2003/0179705 Al 9/2003 Kojima
2004/0004961 Al 1/2004 Lakshmanamurthy et al.
2004/0024894 Al* 2/2004 Osmanetal. 709/230
2004/0064737 Al* 4/2004 Milliken et al. 713/201
(Continued)
OTHER PUBLICATIONS

Cristian Estan, et al., “New Directions in Traffic Measurement and
Accounting”, 2002, pp. 323-336.

Primary Examiner — Alpus H Hsu
Assistant Examiner — Camquyen Thai
(74) Attorney, Agent, or Firm — Blank Rome, LLP

(57) ABSTRACT

A mechanism for identitying long-lived large flows in a com-
munication network is disclosed in which packets transmitted
through ports of a switching device or router are continuously
examined. As new flows are recognized, their flow definition
information is processed through a hashing table that uses a
predetermined number of hash stages each having a pre-
selected number of hash buckets. Each hash bucket has a
counter that is incremented each time flow definition infor-
mation ends up in the bucket. At the same time as counters are
incremented, they are compared against a threshold number.
If the bucket counters for all the hash stages exceed this
threshold number, the flow is identified as a long-lived large
flow and stored as such in a flow table.

21 Claims, 4 Drawing Sheets

220

304(0)(21)

g 306(0)

308

E904(1 N1

>

-306(2)

Long-lived

20'_ 4
-
~308{rm)
304(my2%1)

US 9,306,794 B2

Page 2
(56) References Cited 2007/0140122 A1* 6/2007 Murthyccccooocorrreern 370/231
2007/0230492 Al 10/2007 Ugai etal.
U.S. PATENT DOCUMENTS 2008/0222386 Al* 9/2008 Chiangetal. 711/216
2009/0010259 Al 1/2009 Sirotkin
2004/0117600 AL* 6/2004 Bodas etal.ccoccne.. 712/210 %883;8?32%2 2}: %883 POULR v 7(7)8;‘2/ n
arny et al. ...
2005/0213501 Al 9/2005 Fontana etal. o3 1e Al 8010 oy et A
2005/0270976 AL 12/2005 Yang et al. 2011/0225391 Al* 9/2011 Burroughs et al 711/216
2006/0133376 Al 6/2006 Valdevit & SRR
2006/0146708 Al 7/2006 Kanazawa * cited by examiner

306,794 B2

9

US9

Sheet 1 of 4

Apr. 5, 2016

U.S. Patent

DY J0Hd

$S000Y 051
sndwen

58800y
sndwed SSO00Y
WNIPSIN g1 Lb wtm snduies
Vil jlews

(

1745

Jefionuen

s eiey] . . S
WoI4/0] _ e youeig

US 9,306,794 B2

Sheet 2 of 4

Apr. 5,2016

U.S. Patent

AL |\

¢ "Oid
cea
10858501d
uasiuneD | u Aus mold
£ ISIUN0TD | ¢ AUD MOl
Z ionos | 7 Alus moj PPl ¥Od
subuzg
yse L ASIUINCY | L Aus mold
0ze -~ viz — N—0iz
g WVOL

&ah ,\

US 9,306,794 B2

Sheet 3 of 4

Apr. 5, 2016

U.S. Patent

(1= ZHuDP0e

).

X<| -

?cvmom/

paAl-BUOT
(2)908 (1-.2(1)p0%
80¢ N / -
X<| T
L -2
X | o
(0)90s Lo

(1~ ZX0)v0g

omm.\»

iégj awégm

(W)zpe

:uw

s

YSEH

- -

CWGwos ©)N)vos
\ [

) {1} useH

(1)zoe”

) < {0} yseH

Z \v /@ (0)zoe~”

(LXovoe (o) odwoe

U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,306,794 B2

400
F 402 ,/
identify flow key 408\
‘ /‘ 404 Hash the flow key in the hash
, table
Look up flow key in

flow table

410

Y /

For each hash stage, increment
hash counler at one of the hash
buckets

408

Is there a
maiching
fiow entry?

\4

Does the haw
y 490 N counter exceed
/ thrashold in all

v stages?

increment flow
counter Y

414

Clear hash counter in
corresponding hash buckels in
all stages

418
v

identify as long-lived
large flow

418
e

Add flow as an entry in
flow table

FIG. 4

US 9,306,794 B2

1

ALGORITHM FOR LONG-LIVED LARGE
FLOW IDENTIFICATION

RELATED APPLICATIONS

This application is a non-provisional application of Ser.
No. 61/721,971, titled “Optimal Hardware Algorithm For
Long-Lived Large Flow Identification In Switches And Rout-
ers,” filed Nov. 2, 2012, which is incorporated herein by
reference.

TECHNICAL FIELD

The present invention relates to the field of computer net-
working, and in particular to improved techniques for moni-
toring and management of long-lived large flows.

BACKGROUND

A frame may pass from a source address to a destination
address in a communications network, subject to imposed
constraints such as zoning restrictions in a Fibre Channel
(FC) network. Travel between such a pair of communicating
endpoint network addresses is known as a frame flow (a
“flow”). Communications networks typically handle a large
number of flows. Generally, such flows travel within a com-
munications network from a source device to a destination
device through one or more switching devices. Different
frame flows have a variety of different duration and flow sizes.
While most flows are short-lived, a majority of frames belong
to long-lived flows. Many of the long-lived flows are also
large flows.

Long-lived large flows generally create more traffic across
a network than other flows. Therefore, identifying long-lived
large flows and their activity levels is desirable to detect traffic
congestion causes to route around congestion. Identifying
such flows is also useful for backup transactions, virtual
machine migration operations, long-form video contents,
load balancing, preventing denial of service attaches, and
reporting to a network administrator. U.S. Pat. No. 7,733,805,
titled “Method and Apparatus for Determining Bandwidth-
consuming Frame Flows in a Network,” which is incorpo-
rated herein by reference, discusses a method for identifying
long-lived flows in a Fibre Channel network. While this
method works for FC networks, it is not easily scalable to
Ethernet and IP networks due to a significant increase in the
number of flows that are typically present in an IP or Ethernet
network.

Monitoring frame flows to identify long-lived large flows is
not an easy task, because merely knowing the endpoints and
the various ports involved is not sufficient, as the actual data
transfer levels must also be measured. While this may be
simple in theory, in an actual network, particularly an 1P
network, the sheer number of frame flows renders the task
difficult. Moreover, concurrently monitoring and maintaining
aflow traffic record of all flows presents a substantial resource
obstacle. Additionally, methods used for identifying long-
lived large frames generally result in a high percentage of
false positive identification of short-lived small flows as long-
lived large flows.

Therefore, what is desirable is a novel process and system
that efficiently identifies long-lived large flows in a variety of
communication networks while minimizing false positive
identification of short-lived small flows as long-lived large
flows.

SUMMARY

Implementations described and claimed herein address the
foregoing problems by continuously examining packets

10

15

20

25

30

35

40

45

50

55

60

65

2

transmitted through egress and ingress ports of a switching
device or router and over an interswitch link connected to the
egress and ingress ports to identify long-lived large flows. As
flows that have not already been declared as a long-lived large
flow are recognized, their flow definition information is pro-
cessed through a hashing table that uses a predetermined
number of hash stages each having a pre-selected number of
hash buckets. Each hash bucket has a counter that is incre-
mented each time flow definition information ends up in the
bucket. Atthe same time as counters are incremented, they are
compared against a threshold number. If the bucket counters
for the particular flow for all the hash stages exceed this
threshold number, the flow is identified as a long-lived large
flow and stored as such in a flow table.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a prior art enterprise
network architecture and devices.

FIG. 2 illustrates an architecture of an example network
switching device providing long-lived large flow identifica-
tion features.

FIG. 3 illustrates a hash table used to identify long-lived
large flows according to an embodiment of the present inven-
tion.

FIG. 4 illustrates flowcharts describing exemplary opera-
tions for identifying long-lived large flows.

DETAILED DESCRIPTIONS

A system and method for identifying long-lived large flows
in a communications network is described. FIG. 1 illustrates
a general network architecture 100 for an enterprise with
branch offices and various campuses. A campus core network
102 includes a plurality of interconnected core switches 104.
The core switches 104 are connected to a data center (not
shown). A router 106 is connected to the core switches 104.
The router 106 connects through a wide area network (WAN)
108 to a branch office network no. The branch office network
no includes a unified device 112 which operates as a router,
virtual private network interface, unified communication
interface, switch and PBX. Therefore telephones 114, com-
puters 116 and wireless access points 118 are connected to the
unified device 112. A campus aggregation network 120 is
connected to the campus core network 102. The campus
aggregation network 120 includes switches 122 and 124. The
switches 122 and 124 are connected to the core network
switches 104. Connected to the switch 124 in FIG. 1 is a
WLAN controller 126, a call manager 128, a network access
controller 130, a unified threat management (UTM) device
132 and a network behavioral analysis (NBA) device 134.
These are the various dedicated appliances for the relative
type of traffic. For example, the WLAN controller 126 is used
to manage wireless access control into the network, the call
manager 128 handles unified communications, and the UTM
132 handles various threats and the like. A large campus
access network 140 includes a series of stackable switches
142 which are connected to the switches 122 and 124. Con-
nected to the stackable switches 142 are telephones 144,
computers 146 and wireless access points 148. A medium
campus access network 150 includes a series of switches 152
and 154 which are connected to the switches 122 and 124.
Connected to the switches 152 and 154 are telephones 156,
computers 158 and wireless access points 160. A small cam-
pus access network 170 includes a switch 172 which is con-
nected to the switches 122 and 124. A series of computers 174
are shown connected to switch 172. This is a typical enter-

US 9,306,794 B2

3

prise network configuration with the various exemplary
pieces. It can be seen that to handle the wireless access traffic
for the various wireless access points such as 148 and 160,
network traffic is transferred through the relevant switches
such as 142, 154 and 124 to the WLAN controller 126 for
control. The network traffic is then transferred from the
WLAN controller 126 back to the switch 124 to the core
switches 104. Similarly, unified communications such as call
setups have to travel from the telephones 144 or 156 to the call
manager 128 through the switches 153, 154, 142 and 124 and
then back to the network as required.

The network 100 carries and processes a very large number
of flows (e.g., thousands or millions of flows). Monitoring all
of the flows that travel through each switch in this network
during a specific time period can present an enormous book-
keeping task and consume scarce resources of each switch.
The present invention provides an optimal algorithm for
monitoring flows in a communications network such as the
network 100 to identify long-lived large flows efficiently. The
algorithm, in one embodiment of the present invention, is an
inline solution which requires minimal hardware resource
and has a high degree of scalability. The algorithm also main-
tains a high line-rate of performance and provides an account-
ing of long-lived large flows with a high degree of accuracy.

Each switch in the network 100 may perform the flow
identification functions. A switch can identify long-lived
large frame flows as part of its packet processing of an egress
and/or ingress port. To perform the flow identification func-
tions, the switch may include counters and/or flow tables that
maintain a record of long-lived large frame flows on each link.
It should be understood that two or more switches of the
network 100 can concurrently perform the same flow identi-
fication operations from their own perspective.

In the preferred embodiment of the present invention each
switch in the network 100 includes the algorithm for moni-
toring traffic to identify long-lived large flows. FIG. 2 illus-
trates a block diagram of some of the internal components of
an exemplary switch in the network, such as switch 122. The
switch 122 includes a packet processing circuitry 202 for
processing arriving packets. This packet processing circuitry
202 receives the packet from the port 244 and processes the
packetheader information for various reasons. One important
reason is to determine packet routing, but that logic is not
shown in FIG. 2, as it is not the focus of the present invention
and is omitted for clarity. The header information is also used
for statistical purposes, such as counting frames particularly
counting frames of flows, which is the focus of the present
invention. The counting section uses the packet header infor-
mation by identifying a flow key in the flow definition infor-
mation of the packet header and looking up the flow key in a
long-lived large flow ternary content-addressable memory
(TCAM) 212. The port 244 may be an ingress or egress port.

The flow definition information depends on the type of
communication network used and in one embodiment is pro-
grammable per port. The flow definition may include infor-
mation such as MAC source and destination addresses, 1P
source and destination addresses and TCP source and desti-
nation ports. Depending on the type of network, the flow
definition may be an IP 5 tuple, IP 3 tuple, MPLS labels, Fiber
Channel over Ethernet data transfer parameters, IPv6 labels,
or may take other formats. An IP 5 tuple flow definition can
include the Protocol (IPv4 or IPv6), source IP, destination IP,
TCP/UDP source port, and TCP/UDP destination port. An I[P
3 tuple may include the Protocol (IP Protocol), source IP and
destination IP.

Each flow definition contains a unique flow key that can be
used to identify and distinguish the flow from other flows. The

20

25

30

40

45

65

4

flow key is generally stored in a long-lived large flow table
when such a flow is first identified. The flow key is then used
to locate the flow’s entry in the flow table. When the flow key
is not found in the table, it is an indication that this flow has
not been yet identified as a long-lived large flow.

In one embodiment, as new long-lived large flows are
detected by the packet processing circuitry 202, their flow key
is inserted as a flow entry in a flow table 210 stored in the
TCAM 212 maintained by the switch 122. TCAMs are well-
known devices in which each cell of the memory can take
three logic states, namely “07, “I”” or “X” (undefined or “don’t
care”). In alternative embodiments, instead of a TCAM, other
hardware table resources, such as other types of content-
addressable memory (CAM) are used. Prior art flow identifi-
cation and management mechanisms generally utilize a flow
TCAM for processing and storing information about the
flows passing through the switch. As a result these systems
need significantly large TCAMs to monitor a large number of
flows, both long and short-lived, which is very costly in terms
of chip area and transistor counts. Often much of the TCAM
ends up monitoring short-lived flows, which are not of inter-
est. Thus, a large chip area is effectively wasted, limiting
other functions that could be added. The algorithm of the
preferred embodiment of the present invention uses a count-
ing TCAM for keeping track of long-lived large flows which
is much smaller in size than a routing flow TCAM.

The TCAM 212 receives flow definition information from
the port 244 and uses this flow information to determine
whether the flow has already been identified as a long-lived
large flow and whether or not it should be counted by one of
the counters 214. Each counter of the counters 214 is associ-
ated with one of the flow entries in the flow table 210 and is
used to keep track of the number of long-lived large flows.
The counters 214 include a plurality of hardware counters,
each of which is configurable to count a particular frame flow
when triggered by the TCAM 212. The processor 222 pro-
grams the TCAM 212 for the desired frame flow operations.
The hash engine 220 uses the flow definition information
from the packet headers of incoming flows as input into
various hash buckets that, as discussed below, help identify
long-lived large flows. By having a much more transistor and
chip area efficient method of determining long-lived flows,
the TCAM 212 in the preferred embodiment can be much
smaller than in the prior art, allowing additional functions to
be added or the cost reduced.

FIG. 3 illustrates an exemplary hash engine 220 used to
identify long-lived large flows. The hash engine 220 includes
apredetermined number “m” of hash elements or stages 300.
Each of the hash stages 300 has a different hash function 302
and each has an n bit output. The hash functions 302 may
include cyclic redundancy check (CRC) functions such as the
following:

CRC-12: xxt b P 4x+1
CRC-16-CCITT: x*%+x2+x°+1

CRC-32: X342 04023422 4 04 2 e 0B T
Frxt el

The same flow key is input into each of the hash stages 300
and is examined by each hash stage 300 at the same time.
Each hash stage 300 has a pre-selected number 2” of hash
buckets 304. These buckets 304 are numbered [0] to [27-1]
for each of the hash stages 300 in FIG. 3. Each of the hash
buckets 304 holds a counter (not shown) for keeping track of
the number of flows. The operation of this hash engine 220 is
discussed in more detail below.

US 9,306,794 B2

5

FIG. 4 demonstrates a flow chart showing the steps per-
formed in identifying long-lived large flows. In the preferred
embodiment, the steps of FIG. 4 are performed as part of
ingress or egress packet processing in a switch or router. As
illustrated in FIG. 4, the first step in the algorithm is to
identify a flow key of the flow being processed at the port, at
step 402. The flow key is determined per the flow definition
information and is a unique identifier for each flow. The
identified flow key is then looked up in the flow table 210 of
the TCAM 212, at step 404. Then the algorithm determines, at
step 406, if the flow key matches one ofthe flow entries in the
flow table 210. The matching of the flow key with one of the
flow entries in the table indicates that the flow has already
been identified as a long-lived large flow. This results in
incrementing one of the counters 214 which is associated
with that flow, at step 420, and going back to the first step to
identify more flow keys.

If the flow key does not match with any of the flow entries
in the flow table 210, then the algorithm proceeds to deter-
mine whether or not it belongs to a long-lived large flow. To
achieve that, at step 408, the algorithm hashes the flow key in
the hash engine 220. This means the flow key is hashed in
parallel to all of the “m” hash stages 300 of the hash engine
220. As discussed above, each of the hash stages 300 has a
different hash function 302 and each stage 300 has 2" number
of hash buckets 304. Because each stage 300 has a different
function, the flow key can end up in different hash buckets
304 in each of the hash stages 300. This is indicated, in FIG.
3, by the arrow to the right of the hash function 302. The
counter for the hash bucket 304 in which the flow key ends up
is then incremented in each hash stage 300, at step 410. At this
point in time, the algorithm recognizes which hash bucket
304 of each hash stage 300 holds the flow key as those values
are the outputs of the hash logic of each hash stage 300. Thus,
the algorithm can look at the counters in the relevant hash
buckets 304 to determine whether or not the flow is a long-
lived large flow. This is indicated by the arrow to the right of
the hash buckets 304 pointing to comparator 306. At step 412,
the algorithm compares the value of each of the bucket
counters for the relevant buckets to a predetermined threshold
number, X, using the comparators 306. If all of the relevant
counters (one in each hash stage) exceed that threshold num-
ber, as determined by the AND gate 308, the flow is identified
as a long-lived large flow. Once the flow is identified as a
long-lived large flow, the hash counters in corresponding hash
buckets 304 are cleared, at step 416. The flow is then added as
anew entry to the flow table 210, at step 418 by the processor
222. If the bucket counters do not exceed the threshold num-
ber, the algorithm returns to the beginning to continue moni-
toring the flow.

Periodically during the process, the counters in all of the
hash buckets 304 in each of the hash stages 300 are cleared.
This is done in one embodiment by the algorithm calling a
hardware function. The time interval between clearing the
counters is programmable. In addition to the bucket counters,
the algorithm also periodically ages out the entries in the flow
table. This includes aging of inactive long-lived large flows
and false positive short-lived small flows. This time period is
also programmable.

The above discussed algorithm for identifying long-lived
large flows is very efficient and has a high degree of accuracy.
In one embodiment, the probability of having false positives
using the above algorithm by identifying short-lived flows as
long-lived large flows when few new long-lived flows are
being learnt can be calculated. To calculate this probability, it
is assumed that 1) short-lived flows are uniformly distributed
over the hash space; 2) in each hash bucket, the short-lived

20

25

40

45

50

55

6

flows follow a normal distribution; and short-lived flows fol-
low the same burst pattern in the interval of examination.
Given these assumptions, we can use the following notations
and equations to calculate the probability:

Number of hash stages: m

Number of hash buckets per stage: n

Minimum long-lived flow rate (bytes/sec.): s

Time interval of examination (sec.): t

Number of short-lived flows in time interval: x

Number of packets per short-lived flow in time interval: y

Packet size of short-lived flow: z

Number of short-lived flows in the same hash bucket which
can cause a false positive=x,

Average number of short lived flows in a hash bucket=x,
(x/n)

X, *y*z~=st

x,~=(s*t)/(y*z); and

Probability per hash stage mean x,: p;=P(x>=x,)

Overall probability is p, "m.

The above equations and notations can be used to calculate
an exemplary probability for identifying false positives.
Using the above notations, assuming that a long-lived large
flow has a number equal to 8K, a time of five minutes and the
number of new long-lived flows per second is the following:

New long-lived flows per second=8%1024/300=27.3

and assuming the following numbers:

m=4

n=2K

s=1 MB/sec

=1 sec

x=200K

y=10

z=1K
then:

x,=200K/2K=100

x,=(1024%1024)/(10*1024)=102.4

p;~=0.5 (100 short-lived flows fall into one hash bucket on
the average).

The overall probability will be (p,)"'m=(0.5)"4=0.0625. Thus,
using the above exemplary numbers the algorithm results in a
6% of false positive identifications.

The above equations can be used when only a few new
long-lived large flows are being identified. In cases where a
large number of long-lived large flows are being identified,
network topology may change and the equations should also
be somewhat changed. In this case, assuming that 1) the flows
are uniformly distributed over the hash space; 2) in each hash
bucket, the flows follow a normal distribution; 3) the hash
buckets are filled with long-lived large flows, and given the
following notation:

Number of long-lived flows: 1
then the probability per hash stage (number of long-lived
large flows is mean x,=l/n, p,=P (x>=1). The overall prob-
ability is then equal to p;"m.

The above equations can be used with the following exem-
plary numbers to calculate an exemplary probability for this
particular situation. If for long-lived large flows the number
equals 8K, all 8K long-lived flows are being learnt, and
assuming the following numbers:

m=4

n=2K

s=1 MB/sec

1=8K
p;~=0.95 (4 long-lived large flows fall into one hash bucket
onthe average). The overall probability is then approximately
equal to (p1)"m=(0.95)"4=0.81 (81%).

US 9,306,794 B2

7

If instead of the 2K hash buckets, the algorithm uses 8K
hash buckets (n=8K), the probability drops to the following:
p1~=0.5 (1 long-lived flow falls into one hash bucket on the
average).
The overall probability equals to (0.5)"4=0.0625 (6%).

In the above calculation, if we use eight number of hash
stages instead of four (m=8) and use 8K hash buckets (n=8K),
then the probability drops even further to:

p1~=0.5 (1 long-lived flow falls into one hash bucket on the

average).
The overall probability then equals to (0.5)"8=0.004 (0.4%).
Thus, to decrease the probability of false positives, it is pref-
erable to dimension the number of hash buckets per stage (n)
as equal to the number of long-lived flows. With this, the
number of hash stages (m) at a value of eight (8) dramatically
reduces the probability of false positives to below 1%.

In a preferred embodiment of the present invention, for
long-lived large flows that are 8K long, the algorithm uses
hash tables that are 8 by 8 meaning that they have 8 stages and
each stage has 192 or 8K buckets. The hash engine counters
are preferably 32 bits and count in 32 byte increments. Alter-
native numbers of stages and buckets are possible. For
example, a hash engine can have 4 stages and 4K buckets, or
4 stages and 8K buckets. The number of stages and buckets
can be varied to meet a desired false positive value using the
calculations discussed above.

The above discussed algorithm for identifying long-lived
large flows provides a quick and efficient method for moni-
toring and management of long-lived large flows. As a result
of taking advantage of counting TCAMs and flow tables for
only long-lived flows, this algorithm uses minimal hardware
resources. While running, the algorithm allows the network to
maintain line-rate performance, and it has a high degree of
scalability for IP and Ethernet networks. Additionally, as
shown above, the algorithm provides an accounting of long-
lived large flows with a high degree of accuracy.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. For example, the above-
described embodiments may be used in combination with
each other. Many other embodiments will be apparent to
those of skill in the art upon reviewing the above description.
The scope of the invention therefore should be determined
with reference to the appended claims, along with the frill
scope of equivalents to which such claims are entitled. In the
appended claims, the terms “including” and “in which” are
used as the plain-English equivalents of the respective terms
“comprising” and “wherein.”

What is claimed is:

1. A hash engine for identifying long-lived large flows
comprising:

a plurality of hashing stages for receiving a flow key asso-

ciated with a flow, wherein each hashing stage includes:

a hash function that generates an n bit output from the
flow key;

a plurality of hash buckets, wherein each hash bucket
includes a counter providing a hash counter value,
wherein one of the hash buckets is selected based on
the n bit output, wherein n is an integer greater than 1;
and

a comparator coupled to each of the hash buckets such
that the comparator compares the hash counter value
of the selected hash bucket with a predetermined
threshold to determine if the hash counter value of the
selected hash bucket exceeds the predetermined
threshold; and wherein a logic operation is performed
on the result from all comparators of the hashing
stages to identify the flow as a long-lived large flow if

10

20

25

30

40

45

50

8

the hash counter values for all of the selected hash

buckets exceed the predetermined threshold.

2. The hash engine of claim 1, wherein the hash counter
value of the selected hash bucket is incremented when the
hash function maps the flow key to the selected hash bucket.

3. The hash engine of claim 2, wherein the hash counter
value of the selected hash bucket is compared by the com-
parator after being incremented.

4. The hash engine of claim 1, wherein each hashing stage
receives and processes the same flow key.

5. The hash engine of claim 1, wherein at least some of hash
functions within the hashing stages implement different hash
function within each hashing stage performs.

6. The hash engine of claim 1, wherein the number of hash
buckets within each hash stage is 2n.

7. A network device comprising:

an input port for receiving frame flows;

a packet processing circuitry coupled to the input port for
processing the received flows, the packet processing
circuitry comprising:

a memory for storing information related to identified
long-lived large flows; and
a hash engine comprising:

aplurality of hashing stages for processing a flow key
associated with the received flow, wherein each
hashing includes:

ahash function that generates an n bit output based on
the flow key;

a plurality of hash buckets, wherein each bucket
includes a counter that provides a hash counter
value, wherein at least one of the hash buckets is
selected by the n bit output, wherein n is an integer
and greater than 1; and

a comparator coupled to each of the hash buckets such
that the comparator compares the hash counter
value of the at least one selected hash bucket with a
predetermined threshold to determine if the hash
counter value of the at least one selected hash
bucket exceeds the predetermined threshold; and
wherein a logic operation is performed on the result
from all comparators of the hashing stages to iden-
tify the received flow as a long-lived large flow if
the hash counter values for all of the at least one
selected hash buckets exceed the predetermined
threshold.

8. The network device of claim 7, wherein each the hash
counter value of the at least one selected hash bucket is
incremented when the hash function maps the flow key to the
at least one selected hash bucket.

9. The network device of claim 8, wherein the hash counter
value of the at least one selected hash bucket is compared by
the comparator after being incremented.

10. The network device of claim 7, wherein the memory
includes a flow table for storing flow entries for each identi-
fied long-lived large flow.

11. The network device of claim 10, wherein each flow
entry has an associated counter.

12. The network device of claim 10, wherein the flow key
is sent to the hash engine when the flow table is unable to
identify the received flow as the long-lived large flow.

13. The network device of claim 7, wherein each hashing
stage receives and processes the same flow key.

14. The network device of claim 7, wherein each hash
function of each hashing stage is different.

15. The network device of claim 7, wherein the number of
hash buckets within each hash stage is 2n.

US 9,306,794 B2

9

16. A method for identifying long-lived large flows com-
prising:

receiving a flow key associated with a flow;

inputting the flow key in a plurality of hashing stages,

wherein each hashing stage performs a hash function to
generate an n bit output using the flow key;
for each hashing stage, selecting a hash bucket from a
plurality of hash buckets based on the n bit output,
wherein each hash bucket includes a counter that pro-
vides a hash counter value, wherein n is an integer and
greater than 1;

for each hashing stage, comparing the hash counter value
of'the selected hash bucket with a predetermined thresh-
old to determine if the hash counter value of the selected
hash bucket exceeds the predetermined threshold; and

identifying the flow as a long-lived large flow if the hash
counter values of all of the selected hash buckets exceed
the predetermined threshold.

17. The method of claim 16, further comprising increment-
ing each hash counter value of the selected hash bucket when
the hash function maps the flow key to the selected hash
bucket.

18. The method of claim 17, wherein the hash counter
value of the selected hash bucket is compared after being
incremented.

19. The method of claim 16, wherein each hashing stage
receives and processes the same flow key.

20. The method of claim 16, wherein each hashing stage
performs a different hash function.

21. The method of claim 16, wherein the number of hash
buckets within each hash stage is 2n.

#* #* #* #* #*

10

15

20

25

30

10

